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Plasticity and the Crack Opening

Displacement it Shells

F. Erdogan and M. Ratwani
Department of M e chanical Engineering and Mechanics,

Lehigh University, Bethlehem, Pennsylvania

Abstract

The plastic deformations and the crack opening displacement,

6, in cylindrical shells with an axial or circumferential crack

and spherical shells with a meridionai crack are considered.

It is assumed that outside the perturbation zone of the crack

the shell is subjected to uniform membrane loads perpendicular

to the crack.	 The plastic strip model is used to calculate the

plastic zone size.	 The crack opening displacement is calculated

as the crack surface displacement at the crack tips by using

the conventional superposition technique. 	 In cylindrical shells

with an axial Crack the crack surface displacement perpendicular

to the shell surface (i.e., the bulging) is also evaluated.

The results are applied to a set of existing experimental data

on the fracture of cylindrical shells. 	 The tentative conclusion

is that in dealing with the fracture of thin-walled structures,

among various fracture models 6 = constant appears to be the

most satisfactory criterion.

W

°this work was supported by the National Aeronautics and Space
Administration under the Grant NGR 39-007-011.
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Symbols

2a .	 cracK length

a p = a + p

A m , A b ,	 B i j :

c 1	= Noap/(hE)

c hi	 2 Na p / (hE )

C M	
= 6Map/(Eh2)

C  = a2RN0/(2Eh)

d = aoY /E

E, v.

F:

h:

k m , kb:

k k m + kb

kp.

stress intensity factor ratios

elastic constants

stress function

shell thickness

membrane and bending components of
the stress intensity factor

plasticity corrected stress intensity
factor

N i j , M i j , ( i , j ) = ( x,y,z) :	 stress and moment resultants

N o :	 membrane load perpendicular to the
crack

N, M:	 tractions in the plastic zone

P:	 the plastic zone size

R:	 mean radius of the shell

U, V, W:	 x, y, z- components of the displace-
ment vector

u l , u 2 :	 auxiliary functions
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x, y, z:	 dimensionless coordinates

= a/ap

i 	

b:	 crack opening displacement

X 8 [12(1 - v 2 )] 1/4 a /( Rh) 1/2 : 
shell parameter

a p = [12(1-v`)]
1
/4.

.ap/(Rh)1/2

0Y:
	

yield strength

Introduction

Within the past decade or so the so-called linear fracture

mechanics has established itself as a very satisfactory theo-

retical working tool in studying the phenomena of fatigue crack

propagation and brittle fracture in structural solids.	 The

theories of fracture or the failure criteria based on the use

of the stress intensity factor, K, or, its equivalent, the

crack extension force,', have been most effective in cases

for which the size of the plastically deformed region around

the fracture front is small compared to the length parameter

characterizing the fracture area.	 Thus, the application of

these theories to plane strain fracture and high cycle fatigue

crack propagation involves no ambiguity. 	 However, in the

presence of moderately large plastic deformations, the models

need some re-interpretation or modification.	 Generally, such

a modification is accomplished by either assuming an increased

crack length (usually by adding the plastic zone size to the

-3-
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actual crack length) for the purpose of evaluating K or

[1], or by introducing the concept of "crack opening displace-

went" [2].

An estimate of the plastic zone size necessary for the ap-

plication of the first method may be obtained by using the

plastic strip model introduced by Dugdale [3] (see also, [4]

and [5]) * .	 Justification of the widespread use of this modifi-

cation lies not in the soundness of the underlying physical

arguments but primarily in the fact that, in most cases in-

volving the fracture of materials with high toughness, it seems

to work, the exceptluns being the extreme plane stress config-

urations.

There is a certain amount of diversity and some confusion

Involving the definition and the use of the crack opening dis-

placement. However, the most widely accepted definition of it

is the relative displacement betwee. the opposing surfaces of

the crack at the location corresponding to the actual crack tip

obtained from the solution in which the leading edge of the

crack is assumed to be at the elastic-plastic boundary. 	 In

In [1] and in his subsequent work, Irwin obtained the plastic
zone size as the distance from the crack tip to the point at
which the cleavage stress is equal to the yield strength of
the material. To calculate the cleavage stress the asymptotic
relation for small r around the crack tip was used, which gives
the plastic zone size as a function of K and yield strength
only.

-4-
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Irwin's simple analysis this corresponds to the relative crack

surface displacement at a distance r  from the crack tip, r 

being the estimate of the plastic zone size.	 In [5-7] the

crack opening displacement was assumed to be the relative crack

surface displacement at the (actual) crack tip obtained from

the solution based on the plastic strip model.

The differences between the results obtained by using var-

ious modifications of the original Griffith-Irwin-Orowan model

mentioned above are insignificant if the plastic zone size is

relatively small compared to the crack length.	 However, they

become increasingly more noticeable as the relative size of

the plastic zone becomes larger. At present, even though far

from being perfect, these models seem to be the only satisfactory

theoretical tools available and are being rather widely used in

practice.	 Since most of the experimental work in this area has

been on mode I type fracture under simple plane loadings, the

effectiveness of these models in their applications to fractures

under relatively complex combined loading conditions has not

yet been tested.	 In this paper we will treat one such case,

namely, the internally pressurized cylindrical or spherical

shells with a crack, in which, in addition to the curvature-in-

duced magnification in the stress intensity factor, around the

crack the shell is subjected to bending as well as the membrane

stresses. The particular geometries which will be considered

are the circular cylinder with a longitudinal or a circumfer-

ential crack and the spherical shell with a meridional crack.

-5-
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By using the plastic strip model we will first obtain the

plastic zone size, and then from this solution we will calculate

the crack opening displ^Acement.	 Expressions for the displace-

ment component perpendicular to the s h ell surface (i.e.,

bulging) will also be developed. 	 The results will then be used

to analyze the experimental data given in [8].

2. The Plastic Zune Size

Let the (actual) crack length in the s.helI be 2a, and the

plastic deformations be confined to a narrow strip of length p

ahead of the crack tips (Figure ld). 	 Define

a p = a + p, a = a
a 

I
To determine the unknown constant a p (or p) the standard pro-

;	 cedure of removing the stress singularities at the fictitious
1

crack tip a  through the superposition of two solutions will

be followed.	 For simplicity here we will assume that outside

the perturbation zone of the crack, the shell is subjected to

.ymmetrically applied constant membrane stresses and in this

region the stress resultant which is perpendicular to the crack

is No.

Def i r:. ig the shell parameters

X = [ 12 (1- V2 )] l/4a /( Rh ) 1/2 , X p = [12(1-\)2)]1/4ap/(Rh)1
12

(2)

-6-
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we first obtain the solution for a shell with a crack of length

Za p and subjected to the membrane load N Y = - N o . This solution

gives the membrane and bending components of the stress inten-

sity factor as follows [93:

v a	
^---_

k l	 A m ( )N o ^' kbP	 PQ Ab( 	 ) N o

where the stress intensity factor ratios A m and A b are functions

of A  only and are obtained numerically in tabular form.

We next consider the shell solution under the external loads

coming from the plastic strips lying ahead of the crack tips.

For this we will assume that the crack length again is 2a  and

the shell is subjected to the following surface tractions at

the crack surfaces

NY = N, M V = M, a<IxI<l

N Y = 0 9 My = 0 1	 )x'<a
	

(4)

N xy = 0, Vy = 0,	 JxJ<l

As in most applications of the plastic strip model, here we will

W'
Here x, y, z are the dimensionless r°-ectangular coordinates

with the origin at the mid point of the crack, x is directed
along the crack and z is directed inward perpendicular to the
shell surface (see Figure 1).	 The non-dimensionalizing length
parameter is ap.

-7-
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assume that the unknown tractions IN and M are constant. The

solution of this problem gives the stress intensity factors as

(see the Appendix),

k 2 a B 1 1 (	 ^p)N _ ii-	 + 6 12 ( '	 p)M

(5)

b	 3 a	 6 3a

k2 
a 6

21 (c'	 p )N ^i 	 + B 22 ( ,^p)M 

where the stress intensity factor ratios B 	 = 1,2) are

calculated in tabular form as functions of 	 and xp.

The condition that the stress intensity factors should

vanish at x s + 1 (i.e., at the ends of the plastic zone) may

now be expressed as

k m + k m2
	 0, kb +k 2 = 0	 (6)

Or, by using (3) and (5) and dividing by the yield strength,

f"Y , we find

N
N	 6M	 o

B 11 ). + 612 z°Y + Am F	 0
(7)

N
N	 6M	 o

6 21 aY + 6 22 h^"cY + A b 1-- = 0

-a-
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In ;.he plastic strip, r,.-,x^. 1, the tractions N and M are ex-

pected to satisfy some kind of a yield condition. 	 One -uch

condition which is most commonly used may be expressed as

N	 ♦ 	 6M	 = 1	 !8)v

Equations (7) and (8) provide three (highly nonlinear) algebraic

equations to determine the unknowns a, N and M. 	 Once -t is de-

termined, (1) gives the plastic zone size p as

p = all - 1 )
	

(9)

Eliminating N and M, (7) and (8) may be put in the following

form:

N

L(bll+b21)AM + (b 12 +b 22 )A b ] 5-0.,+ 1 = 0
	

(10)

There the matrix ( b ij ) is the inverse of ( B id ) (which is assumed

to be non-singular).	 Noting that X p = a /a, (10) determines

as a function of the (actual) shell parameter ,, and the stress

ratio N
o 
/ha Y .	 For the limiting case a = 0, the problem is that

of uniformly loaded flat plate and a is given by

nN
lx = COs ^, (a = O)

Y

For the three geometries under consideration the solution

of (10) is shown in Figures 2-4.	 Comparison of the results

-9-
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given in [9] and [13] indicates that the effect of curvature

on the stress intensity factor in cylindrical shells with a

circumferential crack is small compared to that in cylindrical

shells with an axial crack and spherical shells with a merid-

ional crack.	 As p een from Figures 2-4, this trend is also

valid for plastic zone size.	 As the stress ratio N o /hG- Y in-

creases, the convergence of the numerical procedure becomes

slower, and more computer time is required to calculate the

values.	 This is the reason for seemingly incomplete plots

in the Figures.

Obviously, it would be desirable to have analytical ex-

pressions for u as a function of N o /ho Y which are acceptable

approximations.	 For the cylindrical shell with a circumfer-

ential crack the expression

7rN0	
i + 0.2x

(Cos ^--)
rN

+ 0.00854 a - ^ 3 sin fi--°
Y

(12)

seems to be quite satisfactory except for the range in which

both	 x and N o /ho Y are	 large (^>3,	 N o /ho Y >0.7). To	 obtain	 a

similar degree of accuracy in	 representing	 the results	 of	 the

other two geometries, the expressions become much too cumber-

some to be practical; hence, are not included in this paper.

3.	 The Crack Opening Displacement

Referring to Figure 1, to obtain the crack opening dis-

placement, the y-component of the displacement vector on the

^ =

-10-
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crack surface (at the middle surface of the shell), v(x,o),

has to be calculated.	 This is obtained from

L y =	 (Ny - A ) = a ^^ y - 
-

p	 Y

(13)

where 
a 
	 is the half-crack length which is used to normalize

the dimensions, w is the z-component of the displacement vector,

and R  is the principal radius of curvature in y-z plane. 	 In

terms of the stress function F and the displacement w, (13)

may be expressed as

c3 V	 11
	 2

y E ►x ( 3x - 5y 2 + R w
p	 Y

(14)

For the cylindrical shell with a circumferential crack

R  = - and the analysis i s much simpler than the other two

cases.	 For thi	 - ase, the displacement at the crack surface

is found as (see the Appendix)

21a
v(x9o) = ^ t(1- v)u l (x) + ( 1 +v)u 2 (x)J, ^xJ 1	 (15)

P

where u l and u 2 are the auxiliary functions obtained from the

solution of the integral equations (Al) mentioned in the Ap-

pendix.

For the cylindrical shell with an axial crack R y = R is

the mean radius of curvature of the cylinder.	 Thus, expressing

F and w in terms of the functions u i (x) and following a pro-

.	 cedure similar to that outlined in the Appendix, from (14),

- 11 -
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after some lengthy manipulations, the crack surface displace-
*

ment may be obtained as

Zia
-	 [(2-v)u1(x) - )u 

2(x)]' ixl<1
F

v(x,o) _	 (16)

0	 xI >1

In the case of the spherical shell the result does not comp

out to be as simple as that given by (15) and (16). 	 It involves

repeated indefinite integrals of u l and L!,, and requires elab-

orate numerical work for its evaluatiur. Since the numerical

work was not completed, in this paper we will not include any

results concerning the crack opening displacement in spherical

shells.

When the plastic strip model is used to account for yield-

ing around the crack tips, the crack opening displacement will

be defined as the relative crack opening at x = + 	 obtained

from the superposition of the following two solutions:

1.	 The shell with crack length 2a  subjected to the

tractions (Figure ld)

N Y = - N o , My = 0 9 N xy = 0 1 V y = 0, (Ixl ., 1, y = 0)	 (17)

The integration constan, coming from (14) is determined from
the condition that v(+ 1,0) = 0.

-12-
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2.	 Same shell subjected to the tractions given by (4)

where u, N and M satisfy conditions (7) and (8).	 Thus,

the crack opening displacement 6 may be expressed as

k, = 2 [ v 1 ( a ,o) + v 2 (cA,o)]	 (18)

where, for convenience, we may also write

V 2 (a10) = v 2N + v2M

v 2N and v 2M being the individual contributions of the

loads N and M, respectively.

Figures 5, 6 and 7 show some calculated results for the

crack surface displacement v.	 In Figures 5 and 7, the solid

curves simply represent the displacement v(x,o), JxJ<l, in a

shell with the parameter ;gy p and subjected to the uniform mem-

brane load N Y = - N o along JxJ<i.	 The dashed curves v 2N shown

in these figures are, on the other hand, obtained as the dis-

placement at x = a from a solution in which N Y = N applied

along , ,,JxJ<l, y = 0 is the only external load.	 Similarly,

in Figure 6, the solid and dashed curves, v M /c M and v2M /cM1

are, respectively, obtained from the external loads M y = M,

JxJ-'l, and My = M, a <<xl<l.	 The length parameters shown in

the figures which are used to non-dim,!nsionalize v l , v 2N and

v 2M are, respectively, given by

-13-
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N a	 Na	 6Ma
c l - — °, c  = R-'-, c M

 = Ehz (19)

In the case of circumferential crack, since the relative mag-

nitude of the bending moment M and its effect on a and 6 were

extremely small, for this geometry the moment-induced displace-

ments similar to that of Figure 6 are not presented.

The results given in Figures 5-7, with Figures 2 and 4, may

be considered as a set of master curves from which the crack

opening displacement 6 can be calculated as a function of

and N o /(ho y ).	 In fact, it can easily be shown that

b	 =	 2	 (No
a	 U

v +	 N	 y 2N
hO Y	 c N

+	 6M
1oY

v2M)	
d	 =	

aoY	
(20)

c M 	Ecl

where u and the load ratios N /(cyh) and 6M /(h 2 o Y ) are obtained

from the plastic strip analysis by solving (7) and (8).	 a is

given in Figures 2-4.ror a cylindrical shell with an axial

crack, the ratio of the bending stress 6M /h 2 to the membrane

stress N/h applied on the plastic strip a<jxf <1 is shown in

Figure 8.

In the limiting case of a = 0 (i.e., the flat plate) the

crack surface displacement v l and the crack opening displace- 	
A

ment 6 are given by

-14-
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V1 (x,0)
c	 = 2/T--x7 ,  i x J< 1

1

(21)

^N
d- _ - T log(cos ^)

Y

The numerical results for d obtained from (20) and (21) are

shown in Figures 9 and 10.

4.	 Normal Displacement - Bulging

To give an idea about the nature and the magnitude of the

displacement component, w, normal to the shell surface, in this

section we will obtain the expression for this displacement at

y = 0.	 This will be done only for the cylindrical shell with

an axial crack which is subjected to the tractions N  == - No

along JxJ<l, and which, from the practical viewpoint, is the

most	 important case. R^ferring	 again	 to the	 basic formulation

of	 the	 problem, at y =	 0	 the	 displacement w may be expressed

in terms of the auxiliary functions u l and u 2 as follows:

1
w(x,o + ) _	 [hl(x,t)ul(t) + h2(x,t)u2(t)]dt

where

h (x,t) _ 

CO [ 4 1	 + s	 ( 1 	 _ 1 ) _ (3-2Js ( 1 	 _ 1 )]

1	 0	 si al sl s2	 a2	 s3 s4

•coss(t-x)ds

(22)

-15-
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h(x,t) = f [4 1	 _ s	 ( 1	 _ 1 ) _ (1-2v)s ( 1	 _ j_ ) ]
2	 0	 S i 	 a l	 5 1	 S2	

`2	 y3	 S4

•COSS(t-X)ds

s l = 3 s s - a l	 s2	 s7-S+ (1-1 	 s 3 = 'STS - (1 2T'
 s 4 = 3s s+`2

u1	 2
= aeni/4 a	 = xe-ri/4

The kernels h i (x,t) may be expressed in terms of the following

two types of integrals:

jr (^ + 1)coss(t-x)ds = 2cos 
( a l (t-x) )K (at -xl

	

2 1 	 )

0 
s l	 s 2	 — 2	 o

J s(S - s )coss(t-x)ds = a1 c05 (
a (t-X) 

)K0 
( U
- 2It-XI

o	 i	 2

- a sin 
(al(t -x)) ^

 (c'
2

Note

2 	 2__ 	 1 	 2.__

Note that h i has a logarithmic singularity at x = t which re-

quires some special care in evaluating ( 22).	 Also note that

(22) is valid for l x l >l of well as for lxl<l.

Figure 11 shows the displacement w evaluated for the shell

parameter a = 2. The length parameter cw shown in the figure

is given by

a2RN0
c w = -

2
- h

-16-
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Note that on the crack surface w is calculated to be negative,

meaning that the displacement is outward. 	 Also note the slight

depression or inward displacement ahead of the crack tip.

5.	 Application to Experimental Results

It was pointed out that in the presence of plastic deform.a-

Lions around the crack tips, the fracture of the "thin-walled"

structure may be analyzed by using either the plasticity-cor-

rected stress intensity factor, k p , or the crack opening dis-

placement, d. As an example, in this section we will analyze

the data given in [8]. The material used in [8] was 2014-T6

aluminum which was tested at -320°F and -423°F.	 The dimensions

and the yield strength :f the cylinders were:

R = 2.81 in., h = 0.06 in., 0.104<2a .^2.0 in.

0Y = 94,200 psi (at -320°F)

0
Y 

= 104,000 psi (at -423°F)

Figures 12 and 13 show the elastic stress intensity factor,

k = km + k b , and the plasticity-corrected stress intensity fac-

tor k 	 evaluated by using the results of [9] and this paper .

The figures indicate that there is an apparent improvement in

the correlation of the data if the plasticity correction is

* k 
p 

is calculated by replacing a by a p = a + p in the elastic

analysis.

-17-
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,used ( i . e . , over the range of crack lengths 0. 1 2a . 2 i n . , k 

is closer to being constant as compared with k).	 Figure 14

shows the calculated crack opening displacement ^, obtained from

the same data. Comparing the trend of the data as presented

in Figure 14 with that of Figures 12 and 13,	 constant ap-

pears to be a more acceptable fracture criterion.	 Thus, cn

the basis of this limited experimental verification, one may

tentatively conclude that, until a better criterion for plane

stress fracture is developed, 6 a constant may serve as a sat-

isfactory model.

References

1. G. R. Irwin, "Plastic zone near a crack and fracture tough-

ness", Proc. Sagamore Res. Ord. Materials, p. 63 (1960).

2. A. A. Wells, "Notched bar tests, fracture mechanics and

the brittle strengths of welded structures", B. W. J.

vol. 12, p. 2 (1962).

3. 0. S. Dugdale, "Yielding of steel sheets containing slits",

J. Mech. Phys. Solids, vol. 8, p. 100 (1960).

4. G. I. Barenblatt, "Mathematical t)eory of equilibrium

cracks in brittle fracture", Advances in Applied Mechanics,

vol. 7, P. 55 (1962).

5. B. A. Bilby, A. N. Cottrell and K. N. Swinden, "The spread

of plastic yielding from a notch", Proc. Roy. Soc. A272,

p. 304 (1963).	 - 18-

r

S.



P

6. B. A. Bilby, A. H. Cottrell, E. Smith and K. H. Swinden,

"Plastic yielding from sharp notches", Proc. Roy. Soc. A279,

p. 1 (1964).

7. F. Erdogan, "Elastic-plastic anti-plane problems for bonded

dissimilar media containing cracks and cavities", Int. J.

Solids Structures, vol. 2, p. 447 (1966).

8. R. B. Anderson and T. L. Sullivan, "Fracture mechanics of

through-cracked cylindrical pressure vessels", NASA TN

D-3252 (1966).

9. F. Erdogan and J. J. Kibler, "Cylindrical and spherical

shells with cracks", Int. J. Fracture Mechanics, vol. 5,

P. 229 (1969).

10. E. S. Folias, "An axial crack in a pressurized cylindrical

shell", Int. J. Fracture Mechanics, vol. 1, p. 104 (1965).

11. E. S. Folias, "A finite line crack in a pressurized spherical

shell", Int. J. Fracture Mechanics, vol. 1, p. 20 (1965).

12. E. S. Folias, "A circumferential crack in a pressurized

cylindrical shell", Int. J. Fracture Mechanics, vol. 3, p.

1 (1967).

13. F. Erdogan and M. Ratwani, "Fatigue and fracture of cylin-

drical she''. containing a circumferential crack", to ap-

near in Int. J. Fractur o Mechanics (1970).

-19-



r

APPENDIX

Integral Equations

The solution of the problems for symmetrically loaded

cylindrical and spherical shells containing a crack can be re-

duced to that of a system of singular integ^*al equations of the

following form [9-13]:	 '

j
1 2 a
	 u ^ 	t(t) dt
	 ♦ 	 f1 2

i ^	 k i,^ (x,t)u 3
 (t)dt L f

i
 (x)

-1 ^	 -x	 -1 j 
(A1)

i s 1 9 2, IxI<1

where, for the three basic geometries considered in this paper,

the coefficients a il are known constants and the kernels kii

are bounded known functions. The functions f  are given in

terms of crack surface tractions as follows

X
f l (x) _ - f Ny(x)dx

0
(A2)

f 2 (x) = ^` - ; M y (x)dx, D = Eh3/[12(1-v2)]
o

Once the auxiliary functions u i are determined, all the field

quantities in the shell, such as displacements, stress result-

Note that, through a suitable superposition, the singular
portion of the problem can always be reduced to one in which
crack surface tractions are the only external loads.

-20-
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ants or moment resultants, may be expressed in terms of definite

integrals of u i and the kernels corresponding to the particular

field quantity.

In the calculation of the plastic zone size, the striess in-

tensity ratios Am (a p ) and A b (X p ) shown in equation (z) were ob-

tained by letting N Y S - N o and My C 0 in (A2) and by following

the p r ocedure outlined in [13] and [9 ].	 For the calculation
of 

Bij 
shown in (5), the tractions are given by (4). 	 Thus the

input functions become:

	

0,	 IxI<a

f I (x) =

^a2R
^-^— N(X-a), a<IxI <l

(A3)

	

0,	 IxI <a

f2(x)
D_ M(x- ), a<IxI<1

Cra ck Openi ng .. D ispla ,cement

To give an idea about the procedure followed to evaluate

the crack opening disp°iacemeots, here we will briefly consider

the problem of a cylindrical shell with a circumferential crack

-21-
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which, in this respect, is the simplest of the three problems

considered in this paper.	 Let u, v, w refer to the x, y, z

components of the displacement vector and let x and z be, re-

spectively, directed along the crack and perpendicular to the

tangent plane of the shell (Figure 1). 	 Hence the displacement

of interest is v, which can be expressed as

aay = 
L y =	 (N y - A	 a—^ (^X - v	 )	 (A4)

where F is the stress function. 	 Referring to [12] and [13] and

integr^ ; ting * (A4), after some lengthy manipulations we obta,n

-R v(x,o) = f [(1-v)(P + P )(s2 +^,i/2
)1/2

0	 1	 2

+ ( 1 +v)(Pl -P2) 
x ^i/4

e	 ]cosxsds	 (A5)

Considering the following definition of u l and u2

u,(x),	 Ix1<1

( P 1 + P 2 )( s 2.+a i/ 2 ) 1/2 cos xsds =

0	 t0	 y lxl>l

(A6)

(x;
u2(x),	 ^xI <1

f (Pl-P2j T e^`1/4 cosxsds =

0	 0	 y jxj>l

W—	
_'

The integration "quantity" arising from (A4) is a constant
and is determined from v(+ 1, 0) = 0.
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(A5) simply becomes

(1-v)u l (x) + (1+v)u2(x), Ixl<l
v(,x,o) A7

TiTa

0	 x >1

where v(x,o) is one-half of the crack opening displacement.

The unknown functions u l and u 2 are obtained from the solution

of (A1).
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Figure 2.	 The plastic zone factor a vs. the load ratio

N o /(hay) in cylindrical shells with an axial cracK.
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